CEPIS UPGRADE is the European_Journal
for the Informatics Professional, published bi-
monthly at <http://cepis.org/upgrade>

Publisher

CEPIS UPGRADE is published by CEPIS (Council of Euro-
pean Professional Informatics Societies, <http://www.
cepis.org/>), in cooperation with the Spanish CEPIS society
ATI (Asociacion de Técnicos de Informatica, <http:/
www.ati.es/>) and its journal Novatica

CEPIS UPGRADE monographs are published jointly with
Novética, that published them in Spanish (full version printed;
summary, abstracts and some articles online

CEPIS UPGRADE was created in October 2000 by CEPIS and was
first published by Novética and INFORMATIK/INFORMATIQUE,
bimonthly journal of SVI/FSI (Swiss Federation of Professional
Informatics Societies, <http://www.svifsi.ch/>)

CEPIS UPGRADE is the anchor point for UPENET (UPGRADE Euro-

pean NETwork), the network of CEPIS member societies’ publications,

that currently includes the following ones:

« inforewiew, magazine from the Serbian CEPIS society JISA

+ Informatica, journal from the Slovenian CEPIS society SDI

+ Informatik-Spektrum, journal published by Springer Verlag on behalf
of the CEPIS societies GI, Germany, and SI, Switzerland

« ITNOW, magazine published by Oxford University Press on behalf of
the British CEPIS society BCS

+ Mondo Digitale, digital journal from the Italian CEPIS society AICA

+ Novética, journal from the Spanish CEPIS society ATI

+ OCG Journal, journal from the Austrian CEPIS society OCG

+ Pliroforiki, journal from the Cyprus CEPIS society CCS

« Télvumél, journal from the Icelandic CEPIS society ISIP

Editorial Team

Chief Editor: Lloreng Pagés-Casas

Deputy Chief Editor: Rafael Fernandez Calvo
Associate Editor: Fiona Fanning

Editorial Board

Prof. Vasile Baltac, CEPIS President

Prof. Wolffried Stucky, CEPIS Former President

Hans A. Frederik, CEPIS Vice President

Prof. Nello Scarabottolo, CEPIS Honorary Treasurer
Fernando Piera Gémez and Lloreng Pages-Casas, ATI (Spain)
Francois Louis Nicolet, SI (Switzerland)

Roberto Camniel, ALSI - Tecnoteca (Italy)

UPENET Advisory Board

Dubravka Dukic (inforeview, Serbia)

Matjaz Gams (Informatica, Slovenia)
Hermann Engesser (Informatik-Spektrum, Germany and Switzerland)
Brian Runciman (ITNOW, United Kingdom)
Franco Filippazzi (Mondo Digitale, Italy)
Lloreng Pagés-Casas (Novatica, Spain)
Veith Risak (OCG Journal, Austria)

Panicos Masouras (Pliroforiki, Cyprus)
Thorvardur Kari Olafsson (Télvumal, Iceland)
Rafael Fernandez Calvo (Coordination)

English Language Editors: Mike Andersson, David Cash, Arthur
Cook, Tracey Darch, Laura Davies, Nick Dunn, Rodney Fennemore,
Hilary Green, Roger Harris, Jim Holder, Pat Moody.

Cover page designed by Concha Arias-Pérez
"Devourer of Fantasy"/© ATl 2011

Layout Design: Francois Louis Nicolet
Composition: Jorge Ll&cer-Gil de Ramales

Editorial correspondence: Lloreng Pagés-Casas <pages@ati.es>
Advertising correspondence: <info@cepis.org>

Subscriptions

If you wish to subscribe to CEPIS UPGRADE please send an
email to info@cepis.org with ‘Subscribe to UPGRADE’ as the
subject of the email or follow the link ‘Subscribe to UPGRADE’
at <http://www.cepis.org/upgrade>

Copyright

© Novatica 2011 (for the monograph)

© CEPIS 2011 (for the sections Editorial, UPENET and CEPIS News)
All rights reserved under otherwise stated. Abstracting is permitted
with credit to the source. For copying, reprint, or republication per-
mission, contact the Editorial Team

The opinions expressed by the authors are their exclusive responsibility

ISSN 1684-5285

Monograph of next issue (April 2011)
"Software Engineering for

e-Learning Projects"
(The full schedule of CEPIS UPGRADE is available at our website)

@cers LH2GRADE

The European Journal for the Informatics Professional
http://cepis.org/upgrade
Vol. XIl, issue No. 1, February 2011

2 Presentation. Internet of Things: From RFID Systems to Smart
Applications — Pablo A. Haya-Coll, German Montoro-Manrique,
and Dirk Schnelle-Walka

6 A Semantic Resource-Oriented Middleware for Pervasive Envi-
ronments — Aitor Gémez-Goiri, Mikel Emaldi-Manrique, and
Diego Ldpez-de-Ipifia

17 "Creepy ITon i.e.", System Support for Ambient Intelligence (Aml)
— Francisco J. Ballesteros-Camara, Gorka Guardiola-MUzquiz,
and Enrique Soriano-Salvador

25 The Mundo Method — An Enhanced Bottom-Up Approach for
Engineering Ubiquitous Computing Systems — Daniel Schreiber,
Erwin Aitenbichler, Marcus Stander, Melanie Hartman, Syed Zahid
Ali, and Max Mihlhauser

34 Model Driven Development for the Internet of Things — Vicente
Pelechano-Ferragud, Joan-Josep Fons-Cors, and Pau Giner-Blasco

45 Digital Object Memories in the Internet of Things — Michael
Schneider, Alexander Kroner, Patrick Gebhard, and Boris
Brandherm

52 Ubiquitous Explanations: Anytime, Anywhere End User Support
— Fernando Lyardet and Dirk Schnelle-Walka

59 The Internet of Things: The Potential to Facilitate Health and
Wellness — Paul J McCullagh and Juan Carlos Augusto

69 From Informatica (SDI, Slovenia)
Online Learning
A Reflection on Some Critical Aspects of Online Reading Com-
prehension — Antonella Chifari, Giuseppe Chiazzese, Luciano
Seta, Gianluca Merlo, Simona Ottaviano, and Mario Allegra

75 From inforeview (JISA, Serbia)
eGovernment
Successful Centralisation in Two Steps. Interview with Sasa Dulic
and Predrag Stojanovic — Milenko Vasic

78 Selected CEPIS News — Fiona Fanning

* This monograph will be also published in Spanish (full version printed; summary, abstracts, and some
articles online) by Novatica, journal of the Spanish CEPIS society ATl (Asociacion de Técnicos de
Informatica) at <http://www.ati.es/novatica/>.

Internet of Things

A Semantic Resource-Oriented Middleware
for Pervasive Environments

Aitor Gomez-Goiri, Mikel Emaldi-Manrique, and Diego L6pez-de-Ipifia

Pervasive environments are highly dynamic with lots of heterogeneous devices which share information through increas-
ingly interconnected networks. In this context semantic models can be used to describe the context that surrounds them in
a very expressive manner, usually stored in centralized knowledge bases. The applications built on top of these knowledge
bases use heterogeneous protocols to transmit their data, but do not capture the dynamicism of the network. The presented
middleware facilitates the exchange of knowledge between different sensors and actuators in a highly distributed, decoupled
and resource-oriented manner following the Triple Space paradigm. This middleware has been tested on a stereotypical
scenario, which illustrates how different peers can exchange data whilst keeping them autonomous and yet with a reason-
able footprint for devices with reduced computational capabilities.

Keywords: Distributed, Embedded, Mobile, Semantics,
Triple Space.

1 Introduction

In context-aware environments, a lot of devices com-
municate with each other and share changes of state in or-
der to trigger actions within the environment. Different ap-
proaches to modelling and storing context data have been
presented in several works [1], coming to the conclusion
that ontology-based models are the most expressive models
and fulfil most of the requirements of these environments.
The blackboard model is one of the main context manage-
ment models [2] which post messages into a shared media,
usually centralized in a server.

Triple Space computing is a coordination paradigm based
on tuplespace-based computing, which comes from the par-
allel computing language Linda [3]. In tuplespace comput-
ing the communication between processes is performed by
reading and writing data structures in a shared space, in-
stead of exchanging messages. The Semantic Web vision
aims to offer machine-understandable persistent data form-
ing a knowledge network for machines instead of the cur-
rent World Wide Web which is more human-centered and
require user intervention (web services offer remote func-
tionality to machines, but they are not really Web-based since
they are driven by message exchange). Triple Space (TS)
computing performs a tuplespace based communication us-
ing RDF triples, in which the information unit has three di-
mensions: "subject predicate object", to express this semantic
data. TS offers reference autonomy (processes can commu-
nicate without knowing anything about each other), time
autonomy (because of the asynchronous communication)
and space autonomy (processes can be executed in very dif-
ferent computational environments), which cannot be
achieved by message exchange-driven communication.

In this paper middleware for pervasive environments
which uses the blackboard model through a Triple Space
decentralized implementation is presented. This middleware

6 CEPIS UPGRADE vol. xiI, No. 1, February 2011

Authors

Aitor Gomez-Goiri is a PhD candidate from the University of
Deusto, Spain, who works at the INTERNET unit within
DeustoTech — Deusto Institute of Technology. His research
focuses on designing semantic middleware suitable for mobile
and embedded devices. <aitor.gomez@deusto.es>.

Mikel Emaldi-Manrique is a research intern at Deustotech -
Deusto Institute of Technology, Spain. His research focuses on
developing integration middleware for embedded devices.
<m.emaldi@deusto.es>.

Diego Lopez-de-Ipifia holds a PhD in Engineering from the
University of Cambridge, United Kingdom. He is the Principal
Researcher of the INTERNET unit within DeustoTech — Deusto
Institute of Technology, Spain. His research focuses on applying
middleware and web techniques in order to more easily enable
Intelligent Environments. <dipina@deusto.es>.

is specially designed to run over devices with limited com-
putational resources and embedded devices which may be
part of the Internet of Things where common objects share
their contextual information on the network.

The remainder of the paper is organized as follows. Sec-
tion 2 discusses related work. Section 3 presents our
middleware. Section 4 details an experimental environment.
Section 5 examines the results of using the proposed solu-
tion in the experimental environment. Finally, Section 6
concludes and outlines the future work.

2 Related Work

Several approaches exist in the field of semantic
tuplespace [4]. Conceptual Spaces, or cSpaces, were born
to study the applicability of semantic tuplespaces to differ-
ent scenarios including ubiquitous computing. Semantic
Web Spaces propose some new primitives defining two dif-
ferent data coordination views: data view (with syntacti-

© Novatica

Internet of Things

€ € Pervasive environments
are highly dynamic with lots
of heterogeneous devices
which share information
through increasingly
interconnected networks ? ?

cally valid RDF and Linda primitives) and information view
(with consistent and satisfiable data and new primitives).
sTuples was conceived by Nokia Research Center as a per-
vasive computing work and provides description logics rea-
soning and a semantic extension of JavaSpace tuplespace
middleware.

None of this projects was fully distributed and they were
deployed over more or less a client-based architecture which
did not implement the tuplespace paradigm itself in mobile
peers and which restricted the reasoning process to few
powerful devices.

In Triple Space Computing the tuples are expressed in
the form of triples. Currently, two main pure Triple Space
Computing middleware implementations exist: tsc++ and
TripCom.

TripCom has different kernels hosted in servers which
can distribute the semantic data through themselves, but
once again, is too server centered. TripCom clients are not
part of the space and they could hardly be, because of the
complexity of this software which is oriented to run on pow-
erful machines (it is designed to be able to run even differ-
ent modules of the same kernel in different machines).

The first Triple Space project was called TSC. In TSC,
triples can be interlinked to form graphs and semantic algo-
rithms are implemented for template matching. It also of-
fers a transactional context and a simple form to publish
and subscribe to certain patterns. tsc++ [5] is a new version
of the former TSC project [6] which basically offers the
same APl in a distributed way. To do that, tsc++ uses Jxta
Peer To Peer framework to perform the coordination and
Sesame [7] and Owlim [8] to store triples of each peer.

The nodes in tsc++ not only can query the space, but
they can also store their own information, enabling the dis-
tribution of the space over all the peers by means of the
strategy known as negative broadcast. In negative broad-
casting the nodes of a group write the information locally
and read querying to the rest of the nodes. This seems to
adapt to ubiquitous system, where different devices share
heterogeneous data entering and leaving the system, com-
promising data consistency and availability. In this aspect a
sensor can provide information, but when it leaves the space,
its information is automatically removed from there since it
is no longer available to the rest of the nodes. However, as
will be explained below in Section 3.4, negative broadcast-
ing needs to be adapted to those cases in which a device

© Novatica

wants to remotely change the state of actuators managed by
another device.

Nevertheless, tsc++ lacks some of the advantages of
other alternatives: it does not make inferences, it does not
allow expressive querying and last but not least, it has not
been designed for devices with reduced computing capa-
bilities, because tsc++ middleware is focused on architec-
ture and implementation in large scale and we focus on small
scale aspects (local area networks with an intelligent envi-
ronment).

Our work also aims to build an Internet of Things where
everyday objects have connectivity and share their data
through it. Thus, some of our work aspects have been pre-
sented in other solutions which belong to this area such as
[9] or the Web of Things (WoT) paradigm [10]. The first
one describes how the Jxta framework can facilitate the
communication between objects with connectivity capabili-
ties, and even if our solution uses Jxta as communication
protocol, it is more centered on sharing knowledge rather
than on the underlying layers. The second solution advo-
cates the convenience of making objects part of the web to
use existing web techniques to create applications and there-
fore they focus on embedding web servers on them. De-
spite the simplicity of this approach, there are certain as-
pects which are not considered as the discovery method of
new devices (other works try to correct this limitation of
the web approach as [11]), the instability of the nodes which
serve webs in a network or the use of semantics.

As it has been seen, even if some works have analysed
the convenience of the semantic tuplespace approach in
Ubiquitous computing, to the best of our knowledge TS has
never been specifically designed and implemented to use
mobile and embedded devices as another peer of these
spaces and not only as simple clients. This approach allows
heterogeneous devices communicate with each other limit-
ing the necessity of fixed infrastructure and previous con-
figuration enabling more dynamic environments.

3 Infrastructure Description

Our main goal was making Triple Space middleware
suitable for pervasive environments. To do this, it should
enable the communication between devices of heterogene-
ous nature (mobiles, embedded devices, PDAs, Tablets, even
PCs) through different communication links using standard

€ € In context-aware
environments, a lot of devices
communicate with each other
and share changes of state
In order to trigger actions
within the environment 77

CEPIS UPGRADE vol. x11, No. 1, February 2011 7

Internet of Things

Space management

createSpace(space)
joinSpace(space)
leaveSpace(space)

Querying

query(space,template): triples
read(space,graph): triples
read(space,template): triples
take(space,graph): triples
take(space,template): triples
queryMultiple(space,sparq): triples

\Writing

write(space,triples): URI
demand(space,template,timeout)

Subscriptions

subscribe(space,template,listener): URI
unsubcribe(space,URI)
advertise(space,template): URI
unadvertise(space,URI)

Services

register(space,service)
unregister(space,service)

invoke(space,invocation,listener): URI

Table 1: Primitives of the designed Triple Space Implementation grouped by their Nature. space is the URI
which identifies the knowledge of a group of nodes, graph is an URI which identifies a set of triples written into
the space, triples is a set of triples and template expresses a sequence of adjacent triple patterns which specify
WHERE-clauses of SPARQL queries. Service and invocation are interfaces which express the data needed to

define a service and its invocation.

communication protocols and also still be connected to
Internet. These devices would communicate though a push-
and-pull process using semantic and in a very decoupled
fashion.

So, as one of the main concerns was allowing mobile
and embedded devices to run that Triple Space middleware,
effort was put into developing a Java-embedded distributed
triple space implementation, namely tscME, which was still
compatible with tsc++ [5]. It has also been developed a
module to allow embedded devices such as SunSPOTSs or
XBee sensors which do not support IP stack be part of that
space through a gateway. Finally, the former Triple Space
API adopted from [5] was also enhanced to offer more ex-
pressive queries which are spread through all devices within
the space, service management primitives and a new writ-
ing approach.

In the following sections the API and the different stages
of the implementation of the middleware are described.

advertise(tree has branch)
/

\/ “'

Figure 1: Subscribe and Advertise Use Example.

8 CEPIS UPGRADE vol. xiI, No. 1, February 2011

space

3.1API

In order to interact with the Triple Space, an APl is offered
to the developer. Although it was originally inspired in the
tsc++ API, it has been adapted taking into account the nature
and restrictions of pervasive environments. It is composed by
several primitives which are presented in Table 1.

The space management primitives allow the nodes to
share knowledge with different groups of nodes. Query re-
trieves all the triples which match an specific template in a
given space, while queryMultiple divides a SPARQL query
into templates which are sent to all the nodes, the responses
obtained from those nodes are merged and the query is made
again over them potentially obtaining new results. Read
retrieves just one complete graph which contains at least a
triple which matches the template and take does the same
but it removes that graph from the semantic repository of

subscribe(tree has 70 .)

-

~——_

advertise(tree has branch)

© Novatica

rafa
Placed Image

Internet of Things

the node which had it. Both read and take are overloaded to
retrieve an specific graph identified by its URI.

Although write primitive was used to write triples in a local
repository returning the URI which identified the new graph in
which they had been stored, its implementation has been modi-
fied not to always follow the negative broadcasting strategy.
Demand lets the developer announce to other nodes that it will
be responsible for the graphs which match the given template
for a period defined by the timeout parameter. The solution
will be explained further in Section 3.6, below.

Subscribe primitive is used to made a node aware of the
notifications made over the given template or any particu-
larization of it. Advertise lets to a node propagate a notifica-
tion to all the nodes in an space to warn them about some-
thing. Those primitives can be used to build a notification
system upon the space (see Figure 1).

Finally, a service APl was conceived in top of other ba-
sic primitives as a first approach to solve the problems de-
scribed in the Section 3.4 [12]. With register and unregister
the notation of a service (inputs and outputs) is stored in a
node and advertised to the rest of nodes. With invocation
some inputs are written into the space and advertised to the
service provider. The service provider can perform that in-
vocation and, optionally, retrieve the output of the service.
Most of the time, the output may imply changes in the knowl-

edge base of the provider as a result of change in the con-
text. This process will be explained in detail in Section 3.4,
below.

3.2 1st Stage: tscME

The first step towards implementing our middleware was
creating a library for a MIDlet which could be deployed on
Java ME CLDC compliant JVM called tscME. This version
provides space management, querying (except for
gueryMultiple), writing and subscription primitives in a na-
tive way. The communication has done using Jxme (Java
ME’s Jxta framework) and the semantic data was managed
using Microjena [13].

Due to the fact that Jxme does not use multicast, an spe-
cial Jxta element called Rendezvous must be used to propa-
gate mobiles” messages. This element centralizes a little bit
the solution and makes the mobile nodes dependent on them,
but whenever multicasting is implemented on Jxme, this
problem should be automatically avoided.

Since Jxta communication method was slightly differ-
ent from the one used in tsc++ peers, a new communication
layer was attached to those peers. To made subscriptions
and advertising compliant with the method used by tsc++, a
tsc++ node must act as a gateway for tscME nodes break-
ing the distribution principle in mobile nodes. Subscription

//“'-‘::\ o T 7 —‘H‘\
. k I Sarvica -
Sarvi Y 7
(H:' \Przr:-l:il;:r descriplion ﬂamm \I:I
Consumer
A |
T=__stbscribe to invocation \h_.;ﬂ
tarnplate
Ubseriba |
—_— = 3 Qutpy IEJ””H!E""-\.:_
(/-S;N \I Service] ~ -\-\\
[b] | PrwIJ::r | deseription - —
\\ ;" _Serw:e — s wTite __{eschiay
g Invacaban J
B - ~
o
aevertiee . o
e ipeacation pamipkale
———avernse oulpiut templale—
/;m adveiss Sen-.c%] . fd—_ﬂm\
e S fan vl
(z) |Ir Providgar ,.I* iyl | description [s I/ II
\(“ remd | invecaton ({soen
" \x |
il \i >

Sarvica
ulpal

Figure 2: Services over tsc++: (a) registration, (b) invocation from the consumer point of view, and (c) invocation from

the service provider point of view.

© Novatica

CEPIS UPGRADE vol. x11, No. 1, February 2011 9

Internet of Things

& & Our work also aims to build

an Internet of Things where
everyday objects have
connectivity and share

their data through it 77

primitives are, however, not part of the Triple Space para-
digm themselves.

Finally, the basic template has recently been improved,
thus creating a new comparison template both in tscME and
in the expanded tsc++ versions. This new template allows
one to check whether a triple matches it by comparing its
literal value.

Comparison Template Examples

The first example is equivalentto ? s ? p ? 0 . The second
one checks whether a triple has myont:lenght predicate and a
numeric literal object not equal to 3. The last one checks if a
triple has :aitor as the subject, :has_age as the predicate and a
numeric literal object less than or equal to 30.

1. [?s ?p 20 . , 2?0 <= ?1lit .]

, 20 l= "3"""xsd:int .]

, ?0 <= "30"*"xsd:int .]

2. [?s myont:lenght 20 .
3. [:aitor :has age ?o .

3.3 2nd Stage: tsc++ extension

As described above, to make tsc++ compatible with
tscME a new communication layer was attached. Apart from
that, a service APl and queryMultiple was provided in these
nodes. Service API is described in the following section.

QueryMultiple uses an SPARQL Construct query as in-
put and splits it up into basic templates which are spread to
the rest of nodes of the space. Then it filters all the received
responses locally with the original query. Different strate-
gies to propagate the queries have been proposed in [14]
and [15], but due to the nature of negative broadcasting the
nodes do not know anything about each other and therefore
they cannot redirect those basic templates to an specific
node.

Since the SPARQL query decomposition cannot be done
in mobile peers, this primitive is not mandatory.

3.4 3rd Stage: Service API

The necessity of providing this service infrastructure in
Triple Space or not could be argued since the knowledge
can be directly obtained from the space or written into it,
working with resources in a very RESTful way. Although
in Section 3.6 a more resource-oriented approach is de-
scribed, in [12] some primitives to use services inside Tri-
ple Space were proposed.

In pervasive environments, the sensed data can be ob-
tained querying the space, but some limitations when modi-

10 CEPIS UPGRADE vol. Xii, No. 1, February 2011

fying actuators were discovered:

m Security. Since tsc++ does not implement any kind
of access control list, somebody might modify more knowl-
edge than he or she wanted by mistake.

m Concurrency. If two different peers modify the same
information at the same time, what information should be
taken into account?

m Location of the information. Due to the nature of
tsc++, when any information which initially belongs to peer
a is modified by peer b, it is stored in peer b instead of
being stored in peer a. If peer b leaves the space, some
crucial information about the actuator will disappear. It
seems logical that the information about a sensor or an ac-
tuator should be stored in the device which manages it (in
the example, peer a).

Our service solution aims to provide this control to the
device which controls the actuators being respectful of the
asynchronous nature of TS. For that purpose, a really sim-
ple A Service invocation approach, which is very independ-
ent of the way the semantic services are defined (we use
our own service definition language for the scenario, but
other standard languages can be used), was designed. First,
the service provider should register its service in the space
(see Figure 2a). The consumer would discover it querying
the space, and then it would create an invocation using the
master-worker pattern and advertise it (see Figure 2b). An
invocation is basically composed by an URI identifier and
the input data the service may need.

The service provider, which is subscribed to its serv-
ices invocation templates, will notice the event (see Figure
2¢) and will retrieve the input data and perform the service
(typically, performing a change in the environment using
an actuator). When the invocation has been completed, the
provider may write some output triples into the space and
advertise the consumer in a similar fashion to the invoca-
tion.

3.5 4th Stage: Embedded Devices’ Gateway

In this stage, we adapted a gateway which enables the
integration of SunSPOTSs devices into TS. We interact with
the SunSPOTSs through a gateway designed to follow the
WoT paradigm [10]. It provides access to them and theirs
sensors and actuators through RESTful services (see Fig-
ure 3).

Besides the default representations provided by the
server (XML, JSON and HTML), we have added another
one which returns a set of triples with the semantic data
corresponding to the resource identified by the user’s given

& & Our main goal was making
Triple Space middleware
suitable for pervasive
environments 727

© Novatica

Internet of Things

Send Llatus

WOT gateway

HTTFP GET HTTP POST

SunSpot
MNode

write/guery!
readi Templateytake

Read(URL)

HVAC space

Figure 3: Message exchanging between the Nodes beyond
the Space, the WOT Gateway and a SunSPOT.

URL. This representation allows the seamless integration
of SunSPOT devices in the TS by simply replacing the layer
which interacts with the semantic repository of any node
with the one which translates TS primitives into HTTP calls
addressed to the gateway. The translated primitives are read/

{
startupl)
createSpace()
joinSpace()

al))

‘-""'".f

responseDemands

(Set<{Templaie leaseTime |} =)

* lease_t = expire_t - current_t

g obtainDemandsi)
-
-
}] \

Space

take, write and query.

Read has two different implementations. The first one
returns a graph identified by an URL requesting it to the
gateway. For example, to get the graph which describes the
temperature of a SunSPOT, the read primitive would be
mapped to an HTTP GET to the following URL: http://
{host}:{port}/sunspots/{SpotName}/sen-
sors/temperature/

The second implementation, returns the first graph found
in the gateway which has a triple that matches a given tem-
plate. To do that, it requests the following URL passing the
template and the space as parameter: http://{host}:
{port}/read?spaceURI={spaceURI}&template
={"?s ?p 20"}

Internally, the gateway collects all currently available
knowledge for SunSPQOTSs in a temporary repository and
runs the template obtaining the desired result. The take primi-
tive has been mapped to a read primitive since it does not
make sense to remove a graph which is only generated on
demand and therefore is not stored anywhere.

The write parses the contents of the triples passed to it
extracting the values needed to make an HTTP POST re-
quest as follows: http://{host}:{port}/sun-
spots/{SpotName}/leds/led{0-6}?switch=
{true/false}&redColor={0-255}&blueColor=
{0-255}&greenColor={0-255}

The query gets all the triples that match a specific template
in a given space. To do that, a GET request is addressed to a
URL likehttp://{host}: {port}/query? spaceURI
={spaceURI }&template={"?s ?p ?o" }andtheserver
executes the template over all available graphs.

3.6 5th Stage: Remote Writing
Although negative broadcasting perfectly suited to sce-
narios where nodes frequently enter and leave the local net-

€

s o))

- T

*

Figure 4: A Node which joins a Space asks to the Rest of the Members about the Demands they have received.

© Novatica

CEPIS UPGRADE vaol. xi1, No. 1, February 2011 11

rafa
Placed Image

Internet of Things

&4
/ \/ demand(ITemplate,leaseTime)

URI demand(ITemplate,
leaseTime,
callback)

expired demand collector

d(ITpl,1sTm)

Space

d(ITpLIsTm)

Figure 5: Each Hode sends Demands periodically to renew its Responsibility for an Item of Knowledge.

work sharing their own data (i.e. data from its sensors or the
profile of the owner of the mobile phone), this approach
presents a problem when a node changes the context of an
actuator managed by another node (quite common on the
Internet of Things). Those problems have already been dis-
cussed in Section 3.4.

The first approach to solve this problem was the use of
services over Triple Space. The inherent problem with it is
the same that exists between WS*-like web services and
RESTful web services [16]: excessive complexity. As it was
described in [17], Triple Space paradigm is basically a re-
source-oriented paradigm, and since all the primitives use
semantic resources (triples) as basis, it seems logical to find
a solution consistent with the paradigm triples to be used as
base. To keep the API simple for the developer, we have

modified the implementation of the write primitive in or-
der for him not having to care about the write operation to
be used.

In essence, a demand primitive has been created to al-
low each node to reflect its responsibility for a piece of
knowledge by using a template. Write primitive has been
overwritten to send such knowledge to other nodes of the
space when the responsibility for a set of triples is known
to belong to another node. See Figure 4.

The demand primitive has a maximum lifetime after
which the nodes will remove such claim from their regis-
ters to avoid the indefinite accumulation of them. The nodes
which join a space will interrogate others to get an idea of
the responsibilities they have claimed.

Finally, the write will have the following behavior.

Do you have a demand registered
with a template which matches the

given triples?

2] Yes = suggest

URI write{ Set=ITriple=)

sitriples)
Figure 6: New Write Behavior.

12 CEPIS UPGRADE vol. Xi1, No. 1, February 2011

suggest| Set<ITriple=)

if it has demanded a template then invoke internal callback

1) Mo = local writing

s{triples)

:«;l:lriplc?\

(>

© Novatica

rafa
Placed Image

Internet of Things

Yahoo! Yahoo!
Weathar Geo
Sarvice Service
.

getTemperature(place_id) HTTP operations
I
A turnOn() / turnOff()
getPlaceld{environment_name} SunSpot
Node

Weather
updaler

Fan
register(fanService) Node

(invocations)

query(new environments) TS primitives

write{outdoor temperature)

HVAC space

getTemperatures(place) writelits_presence)

query(space_stalus)

Regulator

invoke({fanService)
Node

Figure 7: Implementation of the described Scenario using a Service-based Approach.

m If a node a tries to write a set of triples and another ~ done using an operation transparent to the users of the
node is known to be responsible for the knowledge which middleware called suggest (see Figure 5).
is node a trying to write (somebody has performed a de- m Each node which has performed a demand that
mand with a template that at least one triple matches), it matches the given triples, will call a callback method pass-
will be suggested to the other nodes that the node a wants ing the original set of triples to it. In this method, ideally
to modify that knowledge with that set of triples. This is the environment should be changed using an actuator and,

Yahoo! Yahoo!
Weather Geo
Sarvice Service
f WOT Gataway

getTemperature({place_id) HTTP operations
I

getPlaceld{environment_name) turnOn() / tumOff()

SunSpot

MNode suggest{ledsOn)

Weather

updater demand{ledCRanges)

query(new environments) TS primitives

demand{fanChanges)

write{outdoor temperature) suggest{ledsOn)

HVAC space

getTemperatures(place) write(its_presence)

suggest(ledsOn} query(space_status)

Regulator

Node suggestitumOnFan)

Figure 8: Implementation of the described Scenario using a Resource-based Approach.

© Novatica CEPIS UPGRADE val. Xll, No. 1, February 2011 13

Internet of Things

Number of reqistered demands 10 20 30
Former version write 0.004 0.004 0.004
Current version demand 0.096 0.099 0.098
write 0.006 0.015 0.027
suggest 0.133 0.159 0.186

Table 2: Demand Primitive Performance in Mobile Node (in seconds).

if necessary, reflect that change in the knowledge base.

m If nobody claims responsibility for this knowledge,
it will be written in the local semantic repository (see Fig-
ure 6).

4 Experimental Environment

There are many home automation or urban instrumenta-
tion scenarios where the proposed middleware could be used.
One of these stereotypical cases could be the control of the
room temperature. In this scenario, which uses all the primi-
tives described previously, there are at least five peers, which
are shown in Figures 7 and 8.

There are two different context providers: SunSPOTs and
weather provider. The first types are physical devices which
share their sensed data through the node described in Sec-
tion 3.5. The weather provider, on the other hand, is a vir-
tual context provider which gets information from the
Internet and writes it as semantic information into the space.
To do that, the peer polls for new environments in the space,
and checks if Yahoo! has a place id for this environment
name. If so, it queries the Yahoo! Weather service and it
gets the current temperature in this location. The space has
also an actuator device: an air conditioning system which
will decrease the temperature. It can be turned on or off to
try to regulate indoor temperature. Current temperature can
be also monitored with a mobile phone.

The regulator node uses all the sensed information when-
ever someone is in a place (inferred when there is a device
who belongs to somebody in the space) to decide when to
cool it. To regulate the temperature, this peer checks whether
there is an air conditioning system in the location it wants to
regulate and turns it on.

Basic Indoor Temperature Control Algorithm
while(indoort>26) // unbearable temperature

if (outdoort<26) // user should open windows
else // turn on the air conditioning

In order to implement this scenario two different approaches
can be used depending on what method they use to perform
actions over the environment. The first approach (Figure 7)
uses the described service primitives to create a service which
turns on or off the connected air conditioning. Then the regu-
lator node invokes it whenever it is necessary.

The second approach (Figure 8), the recommended one,
relies in the demand primitive explained above. The
SunSPOT node demands a template related with the LEDs
of the controlled sunspots and the air conditioning node
does the same with a template related with itself. When the
regulator node decides that the indoor temperature should
be decreased, it tries to write that knowledge on the space
but since both SunSPOT and air conditioning nodes have
claimed to be responsible of that knowledge the primitive
is transformed on a suggest primitive. Then, SunSPOT and
air conditioning nodes decide what to do with these infor-
mation. In this example, SunSPOT node turns on or off all
the LEDs of all the SunSPOTS connected to them using
the gateway, so their status is automatically updated and
the air conditioning node turns it on or off and updates its
status.

This scenario is only a proof of concept. Technically, a
SWRL (Semantic Web Rule Language) could be introduced
to define the temperature control rules in a more expres-
sive and decoupled way.

5 Experimentation

In this section, the new demand primitive in conjunc-
tion with the write primitive and the SunSPOT gateway
will be evaluated. The rest of the primitives have already
been assessed in [12] for tscME and in [5] for tsc++.

Number of graphs 10

Number of Spots 1 2 3 4

SunSPOTSs write 0.037 0.036| 0.045 0.037
read(URL) 0.020 0.017] 0.029] 0.028
read(template) 0.198 0.304 0.567] 0.586
take 0.164 0.253] 0.557] 0.597|
query 0.170 0.282 0.396/ 0.507

Table 3: WOT Gateway Performance (in seconds).

14 CEPIS UPGRADE vol. Xii, No. 1, February 2011

© Novatica

Internet of Things

Finally, the stereotypical scenario
presented in the previous section has

been implemented using the demand
primitive and will be compared with the

service-based solution assessed in [12].

5.1 Demand Primitive

In Table 2 we can appreciate how the
demand primitive behaves as a network-

lAction Demand based Service based
implementation implementation

Discover new locations in the 5.38

space

Update weather measures for an 1.91

unknown location

Update weather measures for a 1.18

known location

Check changes on indoor and 10.5

outdoor temperature

ing primitive and therefore it takes the
time which is needed to propagate over
the network until the other node is

service

JAir conditioning activation since
temperature manager invokes its

0.90 1.45

reached, and it may vary depending on

the network status. The write is slightly penalized by the
demands checking process, when the node decides whether
it should write on the repository or propagate a suggest
primitive, but anyway it is nearly insignificant (even for 30
demands, it just takes 20ms more comparing with the meas-
ures obtained in the previous version of this primitive).
When the write is propagated using suggest, the time needed
is also similar to the propagation time.

According to those measures, we can assume that the
new implementation of the write is fast enough to be run
instead of the former implementation, with "always local
writing" behavior.

5.2 SunSPOT Gateway

As can be seen in Table 3, the number of connected
SunSPOTSs does not affect write and read(URL) primitives
performance, because the gateway accesses directly to the
request URL provided by them. With the read(template),
the take and the query, however, the delay increases when-
ever more SunSPQOTs are available since the gateway must
collect the graphs from all the resources of each SunSPOT
to filter the results using the given template.

5.3 Scenario

In order to deploy the scenario in the two ways described
in the previous section, all the nodes in this test have been
configured to wait for up to one second for responses (due
to its asynchronous nature, we cannot predict when all the
responses will arrive). In any case, the performance of this
scenario could be improved by decreasing the waiting time.

& & There are many home
automation or urban
instrumentation scenarios
where the proposed middleware
could be used, e.g. the control of

the room temperature 77

© Novatica

Table 4: Time Measures for proposed Scenario (in seconds).

Table 4 shows the time required for activating the air
conditioning in each implementation. With demand based
implementation, the invocation is done faster. Moreover,
this difference will become more noticeable if more air con-
ditioning machines are activated. While the service-based
invocation will take as much time as needed to perform each
invoke primitive, write will still need a single call taking
the same time.

Finally, from a qualitative point of, it has been experi-
enced that the demand-based approach is a much easier way
to develop the scenario than the service-based approach.

6 Conclusions and Future Work

This paper explores the possibility of bringing semantic
tuplespace-based distributed computing to ubiquitous sys-
tems, where many heterogeneous devices share knowledge
asynchronously and in a resource-oriented manner, which
fits perfectly with the idea of the Internet of Things.

The results obtained in our stereotypical scenario have
proved that the middleware has an acceptable performance.
However a more exhaustive evaluation of the middleware
should be done to check scalability issues and to explore
how the intensive use of it would affect mobile and embed-
ded nodes (battery consumption, usefulness of the
middleware...).

In addition, some implementation problems found on
mobile and embedded nodes can be corrected by applying
effort in improving the P2P framework (using multicast)
and creating a "reasoning" feature for mobile and embed-
ded devices. Otherwise, the usefulness of the proposed
middleware and resulting applications will be limited.

For our future work, we are planning to create new gate-
ways for other embedded devices using the same approach
as for SunSPOTSs, developing a mobile "reasoning” feature,
considering new alternatives for the network layer and ex-
ploring security issues in the middleware. Finally, a per-
formance analysis both in a simulator and in a heavily
instrumented deployment scenario should be taken into ac-
count.

Acknowledgments
This project has been financed under grant PC2008-28 A by

CEPIS UPGRADE vaol. xi1, No. 1, February 2011 15

Internet of Things

the Department of Education, Universities and Research of the
Basque Government, Spain, for the period 2008-10.

References

[1] T. Strang, C. Linnhoff-Popien. A context modeling sur-
vey. Workshop on Advanced Context Modelling, Rea-
soning and Management as part of UbiComp, 2004.

[2] T. Winograd. Architectures for context. Human-Com-
puter Interaction, 16(2):401-419, 2001.

[3] D. Gelernter. Generative communication in linda. ACM
Transactions on Programming Languages and Systems
(TOPLAS), 7(1):80-112, 1985.

[4] L.J.B.Nixon, E. Simperl, R. Krummenacher, F. Martin-
Recuerda. Tuplespace-based computing for the semantic
web: a survey of the state-of-the-art. The Knowledge En-
gineering Review, 23(02):181-212, 2008.

[5] R. Krummenacher, D. Blunder, E. Simperl, M. Fried.
An open distributed middleware for the semantic web.
International Conference on Semantic Systems (I-SE-
MANTICS), 2009.

[6] D. Fensel. Triple-space computing: Semantic web serv-
ices based on persistent publication of information. IFIP
Int’l Conf. on Intelligence in Communication Systems,
page 43-53. Springer-Verlag, 2004.

[7] J. Broekstra, A. Kampman, F. Van Harmelen. Sesame:
A generic architecture for storing and querying rdf and
rdf schema. The Semantic Web-1ISWC 2002, pp. 54-
68, 2002.

[8] A. Kiryakov, D. Ognyanov, and D. Manov. OWLIM -
a pragmatic semantic repository for OWL. Web Infor-
mation Systems Engineering -WISE 2005 Workshops,
pp. 182-192, 2005.

[9] B. Traversat, M. Abdelaziz, D. Doolin, M. Duigou, J. C
Hugly, E. Pouyoul. Project JXTA-C: enabling a web
of things. Proceedings of the 36th Annual Hawaii In-
ternational Conference on System Sciences, page 9,
2003.

[10] Dominique Guinard, Vlad Trifa, Erik Wilde. A resource
oriented architecture for the web of things. Proceed-
ings of Internet of Things 2010 International Confer-
ence (lIoT 2010), Tokyo, Japan, November 2010.

[11] K. A Hua, R. Peng, G. L Hamza-Lup. WISE: a web-
based intelligent sensor explorer framework for pub-
lishing, browsing, and analyzing sensor data over the
internet. Web Engineering, page 762, 2004.

[12] Aitor Gomez-Goiri, Diego Lopez-de-Ipifia. A triple
Space-Based semantic distributed middleware for
internet of things. International Workshop on Web-ena-
bled Objects (TouchTheWeb’10), 2010.

[13] Fulvio Crivellaro, Gabriele Genovese. pena ; Gestione
di ontologie sui dispositivi mobili, 2007.

[14] G. Kokkinidis, V. Christophides. Semantic query rout-
ing and processing in P2P database systems: The ICS-
FORTH SQPeer middleware. In Current Trends in Da-
tabase Technology-EDBT 2004 Workshops, pp. 433-
436, 2005.

[15] L.N.P Obermeier, L. Nixon. A cost model for query-

16 CEPIS UPGRADE vol. Xii, No. 1, February 2011

ing distributed rdf-repositories with spargl. Proceed-
ings of the Workshop on Advancing Reasoning on the
Web: Scalability and Commonsense Tenerife, Spain,
June 2, 2008.

[16] Roy Thomas Fielding. Architectural styles and the de-
sign of network-based software architectures. PhD the-
sis, University of California, Irvine, 2000.

[17] J. Riemer, F. Martin-Recuerda, Y. Ding, M. Murth,
B. Sapkota, R. Krummenacher, O. Shafig, D. Fensel,
E. Klhn. Triple space computing: Adding semantics
to space-based computing. The Semantic Web-ASWC
2006, pp. 300-306, 2006.

© Novatica

